Dendrimer-based triboelectric nanogenerators for renewable energy harvesting

*Fengjiao Liu¹, Herbert Behlow¹, Sai Mallineni¹, Ramakrishna Podila^{1,2}, Sriparna Bhattacharya¹, Apparao Rao¹

¹Graduate student, Clemson Nanomateiral Institute, Department of Physics & Astronomy, Clemson University;

¹Research associate, Clemson Nanomaterials Institute, Clemson University;

¹Graduate student, Clemson Nanomateiral Institute, Department of Physics & Astronomy, Clemson University;

²Assistant professor, Laboratory of Nano-biophysics & COMSET, Department of Physics & Astronomy, Clemson University;

¹Research assistant professor, Clemson Nanomateiral Institute, Department of Physics & Astronomy, Clemson University;

¹R. A. Bowen Professor, Clemson Nanomateiral Institute, Department of Physics & Astronomy, Clemson University

fengjil@clemson.edu

Key words: triboelectric nanogenerator, dendrimer, kitchen aluminum, chemical sensor

Abstract: Triboelectric nanogenerators (TENGs) are promising for harvesting electricity from irregular random mechanical energy or (e.g., oceans waves. wind. walking). Polyamidoamine dendrimer is a functional polymer with a tree-like architecture containing highly electronegative moieties, which can be useful for increasing output of TENGs. Here, we present a vertical mode TENG using polyimide along with different generations of dendrimers coated on kitchen Al foils. The total output power of dendrimer TENGs was found to vary with degree of branching with a maximum power density ~495 µW·cm⁻². The sensitivity of dendrimers electrical resistance to their surrounding environment was used to develop a selfpowered dendrimer-TENG gas sensor.